First Semester M.Tech. Degree Examination, June/July 2023 Digital Circuits and Logic Design

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. Consider the switching function 'f' $f(x_1, x_2, x_3, x_4) = \sum(3, 5, 7, 10, 12, 14, 15)$. Find a minimal threshold logic realization. (10 Marks)
 - b. Determine the following functions are threshold or not:

(i) $f_1(x_1, x_2, x_3) = \sum_{i=0}^{\infty} (0, 2, 4, 5, 6)$

(ii) $f_2(x_1, x_2, x_3) = \sum_{i=0}^{\infty} (0, 3, 5, 6)$

If the given functions are threshold, then write down the threshold gate.

(10 Marks)

OR

2 a. Explain threshold element. Also list out the limitations of threshold element. (10 Marks)

b. Explain finite-state model with equations and examples. (10 Marks)

Module-2

3 a. Explain fault detection by path sensitizing method with an example.

(10 Marks)

- b. For the circuit shown in Fig.Q3(b).
 - (i) Using path sensitization approach, find all the tests to detect input A' s-a-0.
 - (ii) For a given (ABCD) = (1 1 1 1), show all the single faults detected.

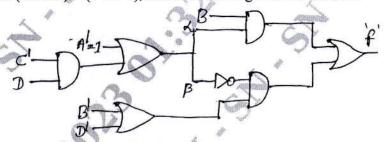


Fig.Q3(b)

(10 Marks)

OR

a. For the circuit shown in Fig.Q4(a), find all the tests to detect the faults x₃ s-a-0 and x₃ s-a-1.

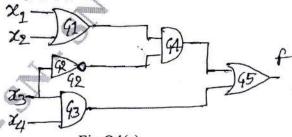


Fig.Q4(a)

(10 Marks)

b. Use the map method to find a minimal set of tests for multiple faults for the 2-level AND-OR realization of the function $f(w, x, y, z) = w\overline{z} + x\overline{y} + \overline{w}x + w\overline{x}y$. (10 Marks)

Module-3

5 a. Explain the preset type of fault-location experiment by considering the fault table as shown in Table.Q5(a). Write down corresponding (i) Reduced Table (ii) Fault Dictionary. Also find out different sets of faults.

	\mathbf{f}_1	f_2	f ₃	f4	f ₅	f_6
T1					1	1
T2	1		1		1	-
T3				1	14	94
T4		1	1			A.
T5	1			C		1
T6	1		1/		J	1

Table.Q5(a)

(10 Marks)

- b. Find the equivalent partition for the machine shown in Table.Q5(b).
 - (i) Show the standard form of the corresponding reduced machine.
 - (ii) Find a minimum length sequence that distinguishes state B from state C.

PS	NS	,Z
13	X = 0	X = 1
A	F, 0	B, 1
В	G, 0	A, 1
С	B, 0	C, 1
D	C, 0	B, 1
Е	D, 0	A, 1
F	E, 1 🗸	F, 1
G	E, A	G, 1
Tab	le O5(b	1

(10 Marks)

OR

6 a. What is merger graph? Draw the merger graph and reduced graph for the machine in Table.Q6(a).

DC	NS, Z				
PS	I1	I2	√I3	I4	
Α	-	E, 1>	B, 1	_	
В	(D, 1	-	F, 1,	
С	F, 1	» —			
D	4 4	_	C, 1	(4)	
Е	C, 0		A, 0	F, 1	
F	D, 0	A, 1	B, 0	-	

Table.Q6(a)

(10 Marks)

b. Find the tests to detect the Faults at x3 s-a-0 and s-a-1 for the circuit shown in Fig.Q6(b).

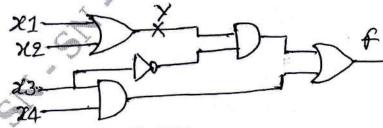


Fig.Q6(b)

(10 Marks)

Module-4

7 a. For the machine in Table Q7(a), determine the π -lattice, and basic partitions.

PS	NS, Z			
	X = 0	X = 1		
A	Е	В		
В	E	Α		
C	D	Α		
D	С	F		
Е	F	C		
F	E	C		

Table.Q7(a)

(10 Marks)

b. For a machine given in Table Q7(b), give the circuit diagram, and two possible state assignments with their logical equations.

00000. 300		\mathbf{Z}	
Z = 0	Z = 1	Z = 0	Z = 1
Α	D	0	×1 **
A	C	0	(0)
C	В	0 🦃	0
C	Α	0,	1
		A D A C C B	A D 0 A C 0 C B 0

Table.Q7(b)

(10 Marks)

OR

- 8 a. Explain: (i) Input-consistent (ii) Output-consistent (iii) Closed partitions with examples.
 (10 Marks)
 - b. For the machine given in Table.Q8(b). Find:
 - (i) Closed partitions
 - (ii) Write down the schematic diagram and π -lattice for machine given in Table.Q8(b).

PS	NS		Z
1	X = 0	X = 1	1
A	G	D \	1
В	Н	C	0
C	F	G.	1
D	E	G	0
Е	C	ЭВ	1
F	C	Α	0
G	Α	Е	1
H	В	F	0
. 1	Table	.Q8(b)	

(10 Marks)

Module-5

9 a. Explain the Homing experiments with example.

(10 Marks)

b. Explain synchronizing experiments. Find the shortest sequence for the machine given in Table.Q9(b).

DC	NS, Z			
PS	X = 0	X = 1		
Α	▶ B, 0	D, 0		
В	A, 0	B, 0		
C	D, 1	A, 0		
D	D, 1	C, 0		

Table.Q9(b)

(10 Marks)

OR

10 a. Explain the adaptive distinguishing experiment by considering the machine shown in Table.Q10(a).

PS	NS	, Z
rs	X = 0	X = 1
Α	C, 0	A, 1
В	D, 0	C, 1
C	B, 1	D, 1
D	C, 1	A, 0

Table.Q10(a)

(10 Marks)

b. Explain the different types of distinguishing experiment with example.

(10 Marks)